
P2T: Bash Scripting Guide 1

P2T: C Programming under Linux
Bash Scripting Guide

1. Simple scripts

#! /bin/bash

Example of an extremely simple script

echo "Welcome to Bash!"

exit 0 # Success

The line #! /bin/bash must appear at the start of all Bash scripts. Comments are preceded with the hash

(#) character, which can occur either at the start of a line, or in the middle.

You can include any commands that you would type into the terminal in a script. For instance, you can

display information by using the echo command.

When a Bash script exits, a numerical code is returned which can be used to check what happened. An exit

code of 0 means everything worked correctly, while a non-zero code means something went wrong. Some

values have special meanings (e.g. 130 means that CTRL + C was used to end the script) but in general you

can use non-zero values as you wish to identify different problems1. A value of 0 is returned by default, but

it is still a good idea to explicitly include exit 0 at the end of your scripts.

2. Layout and comments

As with the C exercises, you should try to lay your code out neatly, as this makes it much easier to read and

understand what is going on, particularly when your scripts get longer. You should also include comments

where necessary to explain what your code does; at the very least, a short comment immediately after the

interpreter directive saying what the script does is a good idea. Comments in Bash begin with #.

Bash is mostly fairly happy for you to use white space as you wish, and we encourage you to use blank lines

and indentation to lay your scripts out neatly. There are a few situations where Bash is fussy about white

space, including before and after the square brackets in conditional tests.

In later exercises and the practical exam, a number of the available marks are awarded specifically for layout

and comments.

1 See https://tldp.org/LDP/abs/html/exitcodes.html for a list of standard exit codes.

https://tldp.org/LDP/abs/html/exitcodes.html

P2T: Bash Scripting Guide 2

3. Branching: conditional statements

#! /bin/bash

Example of a conditional statement

if [[-f "input.txt"]]; then

 echo "Input file located"

elif [[-f "alternative_input.txt"]]; then

 echo "Alternative input file located"

else

 echo "ERROR: No input file located"

 exit 1 # This is an error

fi

exit 0 # Success

Bash has an if … elif … else … fi structure which can be used to branch within your scripts. Both

the elif and else sections are optional. The conditional test is included within doubled square brackets:

[[]]. Some of the most common tests are listed below.

4. Tests

String tests Result

[[STRING1 = STRING2]] True if the strings are equal

[[STRING1 != STRING2]] True if the strings are not equal

[[-n STRING]] True if the length of the string is not zero

[[-z STRING]] True if the length of the string is zero

Arithmetic tests Result

[[A -eq B]] True if the expressions are equal

[[A -ne B]] True if the expressions are not equal

-gt, -ge, -lt, -le Used as above: greater than (-gt), greater than or equal to (-ge),

less than (-lt), and less than or equal to (-le)

[[!A]] Inverts the expression: true if the expression is false, or false if the

expression is true

File tests Result

[[-d FILE]] True if the file is a directory

[[-e FILE]] True if the file exists

P2T: Bash Scripting Guide 3

[[-f FILE]] True if the file is a regular file

[[-r FILE]] True if the file is readable

[[-s FILE]] True if the file has a non-zero size (i.e. it is not empty)

[[-w FILE]] True if the file is writable

[[-x FILE]] True if the file is executable

You can combine tests using && for “and” and || for “or”.

5. for loops

Use a for loop when you want to repeat an action a certain number of times that you know in advance, or

when you want to loop over a particular set of files. You can loop over text values like this:

for animal in "Rabbit" "Squirrel" "Otter"

do

 echo $animal

done

You can also loop over numerical ranges. You can save a little space by combining the loop declaration and

keyword do on the same line, separated by a semicolon (;):

for number in {1..10}; do

 echo $number

done

If you want to use an increment other than 1, you can use a range like {2..20..2} (which will loop over

the values 2, 4, 6… 20).

Finally, you can loop over files by pattern matching on their filenames:

Loop over all files

for file in *; do

 echo $file

done

Loop over text files with names beginning with the letter A

for textfile in A*.txt; do

 echo $textfile

done

P2T: Bash Scripting Guide 4

6. while loops

Use a while loop when you want to repeat an action until something particular happens or until a condition

is met. You will likely not know in advance how many times the loop is going to repeat. For example, you

could pause a script until a particular file is created:

While the results file does not exist...

while [[! -e results]]; do

 # ...wait for ten seconds

 sleep 10

done

You can also use a while loop to loop over the contents of a file, as you will see in Section 10.

7. Variables

You can set and use variables in a script in the same you would from the terminal:

value=123.45

echo $value

You can also access environment variables within your script

echo "You are $USER working on $HOSTNAME"

Special variables exist to let you access useful properties of scripts, including their command-line arguments:

Variable name Value

$0 The name of the script

$# The number of parameters or arguments passed to the script

$1 The first parameter passed to the script (and $2 is the second, etc.)

$@ All of the parameters passed to the script, which is useful for looping over

$$ The process ID of the script

$? The exit code of the last command

Unlike their equivalents in C, $# and $@ do not count the name of the script as the first argument. You can

use the above variables to check that the correct arguments have been provided or to see whether the

commands you are running are working:

P2T: Bash Scripting Guide 5

#! /bin/bash

Check that the correct number of arguments has been provided

if [[$# -ne 1]]; then

 echo "You must provide the name of a file"

 exit 1

fi

Run a simple command with the argument, and check its exit code

ls -l $1

if [[$? -ne 0]]; then

 echo "Something went wrong with the ls command"

 exit 2

fi

exit 0

8. Command substitution

Command substitution lets you take the output of a command and store it in a variable. The recommended

syntax uses parentheses:

result=$(ls -l . | wc -l)

An older syntax using backticks (`) also exists, and you may come across examples of this style online:

result=`ls -l . | wc -l`

9. Interactive input

You can get input from the user and store it in a variable using the read command:

echo "Enter a value: "

read value

echo "You entered ${value}"

You can also combine the prompt with the read command like this:

read -p "Enter another value: " value

echo "You entered ${value}"

P2T: Bash Scripting Guide 6

10. Reading files

The easiest way to read the contents of a file one line at a time is to redirect standard input to the read

command as part of a while loop:

Read file called FILENAME and store each line in variable $line

while read line; do

 echo $line

done < FILENAME

11. Functions

A function definition comprises a name followed by parentheses (()), and then the body of the function

contained within braces ({}):

print_username() {

 echo "You are user $USER"

}

You can call a function using just its name; you do not need to include the parentheses:

Call the print_username function

print_username

You can pass parameters to a function, and refer to these within the function using the variables $1, $2, etc.:

print_greeting() {

 echo "Hello ${1}!"

}

Call the print_greeting function, passing it a single parameter

print_greeting Gordon

12. Next steps

The Linux Documentation Project provides both introductory and advanced guides to Bash scripting:

https://tldp.org/LDP/Bash-Beginners-Guide/html/Bash-Beginners-Guide.html

https://tldp.org/LDP/abs/html/index.html

If you are looking for more information on Bash, these comprehensive guides are well worth consulting.

https://tldp.org/LDP/Bash-Beginners-Guide/html/Bash-Beginners-Guide.html
https://tldp.org/LDP/abs/html/index.html

